Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors.
نویسندگان
چکیده
Mutations in Notch2, Jagged1 or homologs of the Hairy-related transcriptional repressor Hey2 cause congenital malformations involving the non-chamber atrioventricular canal (AVC) and inner curvature (IC) regions of the heart, but the underlying mechanisms have not been investigated. By manipulating signaling directly within the developing chick heart, we demonstrated that Notch2, Hey1 and Hey2 initiate a signaling cascade that delimits the non-chamber AVC and IC regions. Specifically, misactivation of Notch2 signaling, or misexpression of either Hey1 or Hey2, repressed Bmp2. Because Jagged (also known as Serrate in non-mammalian species) ligands were found to be present in prospective chamber myocardium, these data support the model that Notch2 and Hey proteins cause the progressive restriction of Bmp2 expression to within the developing AVC and IC, where it is essential for differentiation. Misactivation or inhibition of Notch2 specifically induced or inhibited Hey1, respectively, but these manipulations did not affect Hey2, implicating Hey1 as the direct mediator of Notch2. Bmp2 within the developing AVC and IC has been shown to induce Tbx2, and we found that Tbx2 misexpression inhibited the expression of both Hey1 and Hey2. Tbx2, therefore, is envisaged to constitute a feedback loop that sharpens the border with the developing AVC and IC by delimiting Hey gene expression to within prospective chamber regions. Analysis of the loss-of-function phenotype in mouse embryos homozygous for targeted disruption of Hey2 revealed an expanded AVC domain of Bmp2. Similarly, zebrafish gridlock (Hey2 homolog) mutant embryos showed ectopic expression of Bmp4, which normally marks AVC myocardium in this species. Thus, Hey pathway regulation of cardiac Bmp appears to be an evolutionarily conserved mechanism to delimit AVC and IC fate, and provides a potential mechanistic explanation for cardiac malformations caused by mutations in Serrate/Jagged1 and Notch signaling components.
منابع مشابه
HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments.
Members of the Hairy/Enhancer of Split family of basic helix-loop-helix (bHLH) transcription factors are regulated by the Notch signaling pathway in vertebrate and Drosophila embryos and control cell fates and establishment of sharp boundaries of gene expression. Here, we describe a new subclass of bHLH proteins, HRT1 (Hairy-related transcription factor 1), HRT2, and HRT3, that share high homol...
متن کاملThe T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system.
We report a critical role for the T-box transcription factor Tbx5 in development and maturation of the cardiac conduction system. We find that Tbx5 is expressed throughout the central conduction system, including the atrioventricular bundle and bundle branch conduction system. Tbx5 haploinsufficiency in mice (Tbx5(del/+)), a model of human Holt-Oram syndrome, caused distinct morphological and f...
متن کاملNotch signaling regulates murine atrioventricular conduction and the formation of accessory pathways.
Ventricular preexcitation, which characterizes Wolff-Parkinson-White syndrome, is caused by the presence of accessory pathways that can rapidly conduct electrical impulses from atria to ventricles, without the intrinsic delay characteristic of the atrioventricular (AV) node. Preexcitation is associated with an increased risk of tachyarrhythmia, palpitations, syncope, and sudden death. Although ...
متن کاملThe REF-1 family of bHLH transcription factors pattern C. elegans embryos through Notch-dependent and Notch-independent pathways.
Much of the patterning of early C. elegans embryos involves a series of Notch interactions that occur in rapid succession and have distinct outcomes; however, none of the targets for these interactions have been identified. We show that the REF-1 family of bHLH transcription factors is a major target of Notch signaling in all these interactions and that most examples of Notch-mediated transcrip...
متن کاملGATA-dependent regulatory switches establish atrioventricular canal specificity during heart development
The embryonic vertebrate heart tube develops an atrioventricular canal that divides the atrial and ventricular chambers, forms atrioventricular conduction tissue and organizes valve development. Here we assess the transcriptional mechanism underlying this localized differentiation process. We show that atrioventricular canal-specific enhancers are GATA-binding site-dependent and act as switches...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 133 21 شماره
صفحات -
تاریخ انتشار 2006